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ABSTRACT 

The scattering of the sound of a jet engine by an airplane 

fuselage is modelled by solving the axially symmetric Helmholtz equation 

exterior to a long thin ellipsoid. The integral equation method 

based on the single layer potential formulation is used. A family of 

coordinate systems on the body is introduced and an algorithm is 

presented to determine the optimal coordinate system. Numerical results 

verify that the optimal choice enables the solution to be computed with 

a grid that is coarse relative to the wavelength. 
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I. Introduction 

The problem considered here is the numerical computation of the far 

field scattering of scalar waves generated by a source at a point q on 

the axis of symmetry of an elongated ellipsoid, E (see figure 1). The 

physical problem that motivated this work is the scattering of the sound 

of a jet engine by an airplane fuselage which is modelled by the 

ellipsoid. 

If aE denotes the boundary of E and p represents the independent 

variables, one is interested in the solution to the following exterior 

Neumann problem: 
2 (1.1) a. Av + k W = -6(p-q) 

b. v = 0 on aE n 

c. lim Iv - ikv12 dA + 0 (R- t  m, r 
R - t w  

where the integral in (1.1~) is over spherical shells of radius R and 

k is the reciprocal wavelength (2.rrf/c where f is the frequency and 

c the sound speed). 

It is well known (see Courant-Hilbert, Volume 2, [l]) that the imposition 

of the radiation condition (1.1~) makes the problem (1.1) well posed. In 

order t o  solve (1.1) numerically one writes the solution V as u1 + u 
I where u is smooth in the exterior of E, which we call E’, and u is 

the singular part 

We then obtain the exterior Neumann problem for U which we call problem A :  



2 (1.3) a. Au + k u = 0 

I duces t o  a one-dimensional equat ion.  

b. u = -ul on aE 

c. 

n n 

1 1  ur - iku l  I R  + 0 (R  -+ m) 

This  paper i s  concerned w i t h  ob ta in ing  f a r  f i e l d  s o l u t i o n s  t o  t h e  

problem (1.3). 

(see Bowman [2])  b u t  t h e  series converges slowly u n l e s s  k i s  s m a l l ,  and 

i s  no t  s u i t e d  to  numerical  computation f o r  i n t e rmed ia t e  f requencies .  

Asymptotic expansions are a v a i l a b l e  f o r  l a r g e  v a l u e s  of k (see [2]  

and Levy and Keller [ 3 ] )  but  t h e s e  w i l l  g e n e r a l l y  n o t  be  uniformly v a l i d  

f o r  a l l  reg ions  i n  t h e  f a r  f i e l d .  There is  a l a r g e  frequency range where 

one can no t  ob ta in  a c c u r a t e  s o l u t i o n s  f o r  c e r t a i n  r eg ions  of t he  f a r  f i e l d  

and f o r  t h e s e  f requencies  d i r e c t  numerical  methods must be  app l i ed .  

The problem is  f i r s t  formulated as  an i n t e g r a l  equat ion  by us ing  a 

This  problem can be solved e x p l i c i t l y  as an  i n f i n i t e  series 

technique discussed by va r ious  au tho r s  ( see  Kellogg [ 4 ] ,  Copley [5] and 

Burton [ 6 ] ) .  One assumes t h e  s o l u t i o n  has  t h e  form 

where 

i s  t h e  f r e e  space Green’s func t ion  and where t h e  unknown p o t e n t i a l  0 i s  

def ined  on t h e  su r face  aE .  On t ak ing  t h e  d e r i v a t i v e  of (1.4) a long  t h e  out- 

ward normal t o  the  s u r f a c e  aE and l e t t i n g  t h e  po in t  p approach aE  one 

o b t a i n s  ( s e e  [ 6 l ) t h e  s u r f a c e  Fredholm equat ion  of t h e  second kind 

We cons ider  only t h e  case of a x i a l l y  symmetric Neumann d a t a  so  t h a t  (1.5) re- 
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The formulation expressed by (1.4) and (1.5) has several problems 

associated with it. It is known that this formulation will break down 

at the eigenvalues of the interior Dirichlet problem (see [ 6 ] ) .  In 

general, at these frequencies the equation (1.5) does not have a solu- 

tion and discretizations for nearby frequencies will be numerically 

ill-conditioned. 

this problem is given in [ 6 ] .  

the ill-conditioning due to the interior resonances does not extend over 

a wide frequency range and this problem will not be considered further. 

An extensive discussion of techniques of overcoming 

It is the experience of the author that 

A more fundamental problem is that of adequately resolving the 

solution 0 at high frequencies. It can be seen from the form of the 

fundamental solution G(p,q) that the Neumann data becomes very oscillatory 

at high frequencies and it is found that the potential itself is also 

highly oscillatory. The resolution problem requires that one obtain a 

grid which not only adequately resolves the solution 

the Green's function 

computed. It will be seen that this is much more crucial for field points 

lying near the major axis than near the minor axis as the Green's function 

is much less oscillatory in the latter case. 

u but also resolves 

G(p,q) so that the quadrature (1.4) can be accurately 

In this paper we introduce a family of new angular coordinates on 

the ellipsoid depending on a free parameter a. We denote this family 

by @a.  These coordinates are related to the polar coordinate angle 0 by 

-1 (1.6) e = tan (a tan @a) 

When a is the ratio of major to minor axes the new coordinates are the 

elliptical angular coordinates (see [ Z ] ) .  It will be seen that these 
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I c o o r d i n a t e s  a r e  g e n e r a l l y  u n s a t i s f a c t o r y  when t h e  g r i d  is c o a r s e  re la t ive t o  

t h e  wave length.  I f ,  however, a is p rope r ly  chosen, a c c u r a t e  high frequency 

s o l u t i o n s  can be ob ta ined  wi th  a g r i d  t h a t  is  c o a r s e  r e l a t i v e  t o  t h e  

wave l e n g t h  and which would g i v e  u n s a t i s f a c t o r y  r e s u l t s  w i th  an evenly spaced 

g r i d  i n  8. 

A d i scuss ion  of t h e  method of choosing a i s  given i n  s e c t i o n  3 .  

It w i l l  be shown i n  t h e  appendix t h a t  i f  t h e  a spec t  r a t i o  e i s  l a r g e  

t h e  cho ice  

( 1 . 7 )  
fi a = e -  2 

i s  n e a r l y  optimal.  It i s  f u r t h e r  shown t h a t  ( 1 . 7 )  i s  independent of t h e  

source p o s i t i o n .  

The s tudy  of t h e  r e s o l u t i o n  problem is  made d i f f i c u l t  because no exac t  

s o l u t i o n  i s  e f f e c t i v e l y  a v a i l a b l e  t o  judge the  accuracy of d i f f e r e n t  

schemes. I f  the source p o i n t  q is  near  t h e  t i p ,  however, a s o l u t i o n  w i t h  

similar o s c i l l a t o r y  p r o p e r t i e s  can be obtained.  

be t h e  p o i n t  symmetrical t o  q b u t  i n t e r i o r  t o  E ,  w e  w i l l  denote  by 

Problem B t h e  following problem 

I n  f a c t  i f  w e  l e t  q’ 

pEa’E 

Problem B h a s  the exac t  s o l u t i o n  

i k  I P-4’ I 
I P-q’ I 

p&E ’ e 
U(P> = 

as can e a s i l y  be v e r i f i e d .  Examination of t h e  Neumann d a t a  f o r  t h e  

two problems shows t h a t  t h e  o s c i l l a t o r y  p r o p e r t i e s  are similar.  The 
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availability of this exact solution permits a detailed evaluation of the 

accuracy of Varicus schemes and parsmeter choices. 

In section 2 we give the details of the numerical scheme used used t o  

solve (1.5). In section 3 we describe how to choose the proper stretching 

parameter a. Numerical results are presented and a discussion of the 

oscillatory properties of the Green's function in (1.4) is given. In 

section 4 we compare numerical computations for the scattering problem 

with the asymptotic expansion of geometrical optics. It is found that the 

accuracy of this expansion depends on the size of the scattered field and 

the angle of observation. The convergence of the two solutions as ka increases 

will be apparent. 

11. Details of the I!umerical Scheme 

We first establish our notation. We denote by a and b the semi- 

major and semi-minor axes of E. The aspect ratio is defined as the ratio 

a/b. The quantity k has units (length) and in discussing frequencies 

we will use the non-dimensional quantity ka. If the coordinates are scaled 

by a constant factor a the solution to (1.11, and k are similarly scaled 

and thus the actual value of a is irrelevant. 

-1 

We will use 0 to denote the polar angle and we will define r = g(i) 

as the polar coordinate representation of the ellipse which is rotated to 

give the ellipsoid. The azimuthal angle will be denoted by A. New angular 

coordinates will be denoted by (0 where the parameter ci is given in 

(1.6), or just by $I if no confusion will arise. Far field solutions will 

a 

be computed on a large circle surrounding E. By eo we will denote the 

polar angle of the observation point. 

The equation (1.5) is reduced to a 1-dimensional equation in the polar 

angle C .  Discretization of the integral in (1.5) at n points g i v e s  rise 

to an nxn linear system. The discretization is done by the trapezoidal 

rule using an evenly spaced grid in the new coordinates 4 (see (1.6)). 
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Higher order formulas were found to be unsatisfactory when the grid was 

coarse relative to the wavelength l/k. This is because higher order 

formulas, with a grid spacing h, will have errors of the from 

for some p (see Isaacson and Keller [ 7 ] )  and hk is not small. 

(hk)'+l 

The kernel in (1.5) has an integrable singularity at q = q'. 

The behavior near the singularity is the same as for Laplace's equation 

(k = 0) and is treated by a technique described in [ 6 ] .  One uses the 

fact that 

where 

is the free space Green's function for the Laplace equation. 

theorem one has 

From Green's 

and this enables one to compute the integral of the kernel across the 

singularity . 
Using the axial symmetry, the equation (1.5) is rewritten as a l-dimen- 

sional equation 

- -  ' (e) /"I2 d e  a ( e ) H ( e , e )  = - ~ ~ ( e )  . 
2 (2.1) 

-n/2 

The kernel function is given explicitly by 



- - 
where t h e  p o i n t  q corresponds t o  the  s p h e r i c a l  c o o r d i n a t e s  (f? ,h) ,  and 

t h e  p o i n t  q corresponds t o  t h e  s p h e r i c a l  c o o r d i n a t e s  (0,O). I n t r o d u c t i o n  

of new c o o r d i n a t e s  4 adds o n l y  t h e  t e r m  - de m u l t i p l y i n g  H. The numeri- 

c a l  i n t e g r a t i o n  i n  t h e  X d i r e c t i o n  i s  done u s i n g  a g r i d  so t h a t  AA c o s 8  

is c o n s t a n t .  This  i n t e g r a t i o n  is  not p a r t  of t h e  d i s c r e t i z a t i o n  and does 

n o t  a f f e c t  t h e  s i z e  of t h e  matrix.  

d@ 

I f  p deno tes  a f a r  f i e l d  po in t ,  t h e  s o l u t i o n  u(p)  i s  computed by - 
numerical  i n t e g r a t i o n  of (1.4).  If we denote  by G(p,e) t h e  l o n g i t u d i n a l l y  

i n t e g r a t e d  Green's Function. 

( 2 . 3 )  
21T 

0 
c ( p , 8 )  = dh  

where q i s  t h e  p o i n t  on t h e  e l l i p s o i d  w i t h  s p h e r i c a l  coord ina te s  (8,X) 

t h e n  

The s a m e  g r i d  is  used as i n  t h e  so lu t ion  of ( 2 . 1 )  i n t roduc ing  t h e  f a c t o r  

- de 
d4 

i n t o  (2.4) .  We p o i n t  out  tha t  t h e  t r ans fo rma t ion  (1.6) p re se rves  t h e  

symmetry about t h e  l i n e  8 = 0 and t h i s  reduces by one-half t h e  work in-  

volved i n  computing t h e  ma t r ix  corresponding t o  t h e  d i s c r e t i z a t i o n  of (1 .5) .  

T h i s  i s  by f a r  t h e  c o s t l i e s t  p a r t  of t h e  computation. Typical  running t i m e s  

on t h e  Cyber 175,  f o r  a g r i d  o f  129 p o i n t s  a re  40 seconds t o  compute t h e  

m a t r i x  and 1.8 seconds f o r  t h e  Gaussian e l i m i n a t i o n .  The computation of 

t h e  f a r  f i e l d  from t h e  numerical  i n t e g r a t i o n  of (1.4) r e q u i r e s  .5 seconds 

p e r  p o i n t  and t h u s  t h e  method becomes more e f f i c i e n t  t h e  g r e a t e r  t h e  number 

of p o i n t s  r equ i r ed .  

-7- 



111. Choice of Stretching Parameter 

In order to solve the system (1.4 - 1.5) with a coarse grid, relative 

to k, one must make an appropriate choice of the new coordinates 4, or 

equivalently the parameter a (see (1.6)). 

It is possible to constructively determine the optimal parameter. To 

do this we refer to the integral equation (2.1). Let $ be any angular 

coordinate system on the ellipse and if (1 is the source point for either 

problem A or problem B we let R (9) be the distance from the axial 
9 

point q to the point corresponding to the angle @ on the ellipse. The 

right hand side of (2.1) will be of the form 

ikRq ($1  
u ($1  = [smooth function of $ 1  x e n (3.1) 

ikRq (4 1 
and thus the oscillatory behavior will be that of the function e 

If $a belongs to a family of coordinate systems depending on a it is 

clearly necessary to choose the system for which 

Locally, about any point @ , one has 

e ikRq(@) is the smoothest. 
0 

and thus 

Equation (3.2) can be interpreted as giving rise to a local wave number 

and the point where IRil is maximized determines the point of largest 

local wave number, or equivalently the point where (3.1) is most oscillatory. 

It is therefore clear that in order to obtain maximal resolution of (3.1) 
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with  a f i x e d  evenly spaced 4 gr id ,  

maximum of IRi($) I is minimized, i 

7.0833 21.0 2.14 

7.5 2 2 . 3  5.72 
i 

(3.4) min  max 
a' + 

For an e longated  e l l i p s o i d  with 

problem (3.4) has  a s o l u t i o n  

one should choose a so t h a t  t h e  

e.,  a s a t i s f i e s  a mini-max p r i n c i p a l  

a spec t  r a t i o  e >> 1 t h e  mini-max 

(3.5) 
42 -2 cc = e (  7 + O(e >)  

where t h e  remainder i n  (3.5) is  independent of t h e  source  p o s i t i o n .  The 

exac t  s o l u t i o n  of (3.4) i s  genera l ly  n o t  r equ i r ed  and t h e  choice  

Jz a = e -  2 

is s u f f i c i e n t  i n  t h e  tests which w i l l  be  descr ibed  below. 

I t  is  found t h a t  a determined by (3.4) always provides  opt imal  o r  

n e a r l y  opt imal  s o l u t i o n s .  

f o r  t h e  t e s t  problem B f o r  two d i f f e r e n t  e l l i p s o i d s .  E l l i p s o i d  1 has an  

a spec t  r a t i o  of 7.083 and i s  of d i r e c t  i n t e r e s t  as  a model of an a i r p l a n e  

fuse lage .  E l l i p s o i d  2 has  an aspect r a t i o  of 3 and i s  used t o  show t h a t  t h e  

s t r e t c h i n g  t ransformat ion  (2.2)  i s  no t  r e s t r i c t e d  t o  t h i n  e l l i p s o i d s .  

To demonstrate t h i s  w e  p re sen t  numerical  r e s u l t s  

The r e s u l t s  t abu la t ed  below a r e  f o r  a non-dimensionalized frequency 

ka of 150. In  both cases a g r i d  of 129 p o i n t s  w a s  used. The i n t e r i o r  

"source" po in t  q '  w a s  a long  t h e  major a x i s  a t  a d i s t a n c e  of .96a and t h e  

f i e l d  is  computed on a sphere  of r ad ius  of 20.2a. 

I n  t a b l e  1 w e  p re sen t  L2 e r r o r s  f o r  e l l i p s o i d  1 f o r  d i f f e r e n t  va lues  

of a. The maximum of IR:(@) I is a l s o  ind ica t ed .  

c1 rnax I R ~ I  L e r r o r  2 

16.2.  . O l l  

5 .5  16.54 .012 

6.0 i 6.8 

17.8 

20.2 

.178 1 3.51 



In table 2 similar results are presented for ellipsoid 2. 

L error 2 o! max (R' I 
4 

2.0 

2.2 

2.4 

2.75 
3.0 

3.3 

15.8 

15.6 
16.1 
18.4 
20.1 

22.1 

. 11 

.092 
,076 

4.18 
2.84 

2.88 

TABLE 2. 

In both cases we note that stretching based on elliptical coordinates 

(i.e., c1 = aspect ratio) gives inaccurate results while if a is chosen 

to satisfy (3.4) accurate results can be obtained. 

A more detailed examination of the solutions which generated tables 

1 and 2 shows that in all cases the solutions agree closely near the minor 

axis and that large errors occur for observation direction near the major 

axes. This is due to the nature of the Green's function appearing in the 

quadrature (1.5). 

It is found the longitudinally integrated Green's function (2.3) is 

much more oscillatory for field points p near the major axis than the 

minor axis. If p is along the major axis the Green's function is just 

where R is the distance from the point p to the point described by 4 
P 

on the ellipsoid. 

tion to (3.4) is independent of the fixed axial point p and thus the 

The results presented in the appendix show that the solu- 



coord ina te  system obtaii led w i l l  a l so  p rev ide  adequate  resolution f o r  t h e  

quadra ture  (1 .4) .  A s  t h e  body approaches a sphere ,  however, t h i s  is  n o t  

t h e  case  and t h i s  l i m i t s  t h e  accuracy which can be  ob ta ined  f o r  f i e l d  p o i n t s  

nea r  t h e  major axis. 

The p r i n c i p l e s  descr ibed  h e r e  have been used t o  gene ra t e  s o l u t i o n s  

f o r  t h e  s c a t t e r i n g  problem A.  Comparing s o l u t i o n s  f o r  d i f f e r e n t  g r i d  

s i z e s ,  i t  has  been found t h a t  determining u by t h e  p r i n c i p a l  ( 3 . 4 )  

enables  one t o  compute a c c u r a t e  s o l u t i o n s  w i t h  g r i d s  t h a t  are much c o a r s e r  

than those  r equ i r ed  f o r  t h e  n a t u r a l  coord ina te  system of the e l l i p t i c a l  

angular  v a r i a b l e s .  

I V .  Comparisons With Geometrical  Opt ics  

For l a r g e  va lues  of ka asymptotic expansions f o r  t h e  s o l u t i o n  t o  

problem A are  known. The most common expansion is  t h a t  of geometr ica l  

o p t i c s  (descr ibed  conc i se ly  i n  [ 2 ] ,  pp. 22-24 and d iscussed  i n  g r e a t e r  

g e n e r a l i t y  i n  [ 3 ] ) .  Here w e  do not a t tempt  t o  d e s c r i b e  t h e  theory  bu t  

r a t h e r  t o  judge  t h e  v a l i d i t y  of t h i s  expansion as compared t o  a c c u r a t e  

s o l u t i o n s  generated by t h e  i n t e g r a l  equat ion  method. 

Re fe r r ing  t o  f i g u r e  2 ,  geometr ical  o p t i c s  p r e d i c t s  t h e  f i e l d  a t  t h e  

p o i n t  p as t h e  supe rpos i t i on  of t h e  i n c i d e n t  f i e l d  and t h e  s c a t t e r e d  

f i e l d  r e f l e c t e d  from t h e  po in t  s. 

t h e r e  is a r eg ion  where no r e f l e c t e d  r ays  can reach. 

shadow reg ion  and t h e  geometr ical  o p t i c s  f i e l d  has  a d i s c o n t i n u i t y  between 

It is apparent  from the f i g u r e  t h a t  

Th i s  i s  c a l l e d  t h e  

t h e  shadow reg ion  and i t s  complement ( t h e  i l l umina ted  r eg ion ) .  I n  t h e  

n o t a t i o n  of f i g u r e  2 t h e  geometr ical  o p t i c s  f i e l d  can be w r i t t e n  as 

( 4 .  l a )  
i k  I s-p I 

+ +I- i k  I 9-P I e p E i l l umina ted  r eg ion  
go 

p &  shadow region  v (PI = 0 
go 

(4 . lb)  
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The amplitude function z(p) is determined by a principle of 

.122 
100 75 I .096 
125 1 .088 
150 .083 

200 .060 

conservation of energy" along tubes of rays and is given explicit.; in I t  

.720 .16 

.576 .16 

.545 .18 

.414 .20 

.316 .19 

[ 2 ]  (p. 2 4 ) .  We point out that (4.1) must be regarded as an approximation 

to the full problem (1.1) and not for the solution u to (1.3). This 

will become apparent from the results presented below. 

Computations were made for ellipsoids 1 and 2 for different source 

positions and different values of ka. Solutions were computed at 10' 

intervals on a circle of radius 20.2a and the integral equation solutions 

for the scattered field are believed accurate to 10%. 

were computed and normalized by both the total and scattered field. 

L2 differences 

Results are first presented for eo 2 0 where geometrical optics 

is most accurate. Table 3 shows the L2 differences for ellipsoid 1 for 

the source at 1.04a. The second entry, El, is the L2 difference normalized 

by the total field while the third entry, E2, has normalization by just the 

scattered field. The fourth entry, R1, is the ratio of the L2 

scattered field to the L2 norm of the total field. 

TABLE 3 .  

norm of the 

We observe that the errors normalized by the total field are very small 
and do not reflect the large errors when normalized by just the scattered 
field. This is because geometrical optics is an approximation to the total 

field and will not accurately approximate the scattered field when it is 
only a small component of the total field. 

This is further demonstrated in table 4 where the same quantities are 

presented for ellipsoid 2. Here the scattered field is a much greater component 
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of t h e  t o t a l  f i e l d  and w e  see that  t h e  errors are r e l a t i v e l y  i n s e n s i t i v e  

t o  t h e  no rma l i za t ion  

125 

150 

ka E2 R1 

.088 .185 .47 

.082 ,148 .48  

75 

100 

125 

150 

200 

TABLE 4. 

.I76 1.22 .14 

.154 1 . 0 1  .15 

.149 ,903 .17 

.147 .795 .18 

.124 ,675 .18 

F i n a l l y  w e  cons ider  t h e  accuracy of t h e  approximation (4.1) as t h e  

shadow reg ion  i s  approached. Table 5 shows t h e  same q u a n t i t i e s  bu t  w i t h  

t h e  r eg ion  

i l l umina ted  r eg ion  but  t h e  degradat ion as one approaches t h e  shadow reg ion  

eo - > -60' used f o r  t he  comparison. A l l  p o i n t s  are i n  t h e  

I 
75 .288 1.21 

100 .263 1.01 
125 .260 .853 

150 .253 .740 

200 . 2 2 1  .632 

i s  apparent .  

.24 

.26 

.30 

.34 

.34 

t h e  

I 
75 .288 1.21 

100 .263 1.01 
125 .260 .853 

150 .253 .740 

200 . 2 2 1  .632 

.24 

.26 

.30 

.34 

.34 

TABLE 5. 

I n  t a b l e  6 t h e  same q u a n t i t i e s  are g iven  wi th  t h e  e r r o r s  taken  over  

e n t i r e  region.  The very  l a r g e  inaccuracy  of (4 . lb)  is c l e a r l y  eviden .t. 

TABLE 6. 
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The conclusion drawn i s  t h a t  t h e  v a l i d i t y  of t h e  geomet r i ca l  o p t i c s  

approximation depends on t h e  s i z e  of t h e  s c a t t e r e d  f i e l d  r e l a t ive  t o  t h e  

t o t a l  f i e l d  and on whether t h e  reg ion  of i n t e r e s t  is  bounded away from 

t h e  shadow region.  

t i o n  ( s e e  [ 2 ] ,  Chapter 11) h a s  been t e s t e d  and found v e r y  i n a c c u r a t e  f o r  

e longated  e l l i p s o i d s .  

I n  t h e  shadow reg ion  t h e  theory  o f  geometr ica l  d i f f r a c -  

An experiment t o  v e r i f y  t h e s e  r e s u l t s  has  been conducted and i s  

r epor t ed  on s e p a r a t e l y  ( s e e  Bay l i s s  and Maes t r e l lo  [ 8 ] ) .  Close agreement 

w a s  ob ta ined  using e l l i p s o i d  1 f o r  va lues  of ka up t o  166, t h e  l i m i t  of 

t h e  experimental  appa ra tus .  F igure  3 is  a p o l a r  p l o t  of t h e  sound p r e s s u r e  

l e v e l  ( r e l a t i v e  t o  t h e  a x i s )  f o r  ka = 166. Also p l o t t e d  are  t h e  exper i -  

mental  v a l u e s  and t h e  r e s u l t s  p r e d i c t e d  by geometr ica l  o p t i c s .  The d iver -  

gence of t h e  two methods as t h e  shadow reg ion  is  approached is  ev iden t .  

I t  i s  f e l t  t h a t  t h e  p r i n c i p l e  o f  minimizing t h e  l o c a l  wave number as 

o u t l i n e d  i n  s e c t i o n  3 provides  a method f o r  ex tending  t h e  range of f r e -  

quencies  f o r  which s c a t t e r i n g  can be computed numer ica l ly  f o r  a given amount 

of work. The method appears  t o  be gene ra l ,  a t  least  f o r  bodies  which do 

no t  have edges o r  cusps and a l though t y p i c a l l y  t h e  mini-max p r i n c i p l e  

( 3 . 4 )  can on ly  b e  so lved  numer ica l ly ,  t h i s  could make s u b s t a n t i a l  improve- 

ments i n  t h e  e f f i c i e n c y  of  t h e  numerical  c a l c u l a t i o n s .  



Appendix 

Here we give a proof of relation (3.5) in the determination of the 

optimal parameter a. 

Letting Be denote the elliptical angular coordinates we have 

-1 8 = tan (e tan ee) . 

Thus if y is defined by 

-1 8 = tan (y tan 4)  (A-1) e 

it follows that 

ci = ey 

and it is thus sufficient to show that 

For simplicity we will set a = 1 so that e = l/b where b is 

the semi-minor axis. We can then rewrite equation (A-2) as 

(A-3) y=$+O(b) 2 , 

If 
zo 

denotes the source position, ( z o  > 1) we have 

2 2  
R (ee) = /(sin e e - z o ) 2  + b cos ee 

zO 

for the 

script 

distance function from the source to the body. Dropping the sub- 

and differentiating we obtain zO 
2 

dR 

doe 

cos 0 e [sin 8,(1-b ) - z o ]  

R - =  Y 
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which can be written as 

(A-4) - =  dR cos 8,(1+ O(b2)> 
e de 

with the reminder uniform in Be and uniform in z for z bounded 

away from 1. 
0 0 

From (A-1) we obtain 

+ = tan-’(y-l tan eel 
and on differentiating we have 

(A-5) 

Letting w = sin 8 the mini-max principle of (3.4) can now be stated as e 

min l/y max [J1-w2 (l+O(b2))(y2(1-w2)+W 21 . 

If we denote by m(y,b) the maximum of the term in brackets in (A-6) 

and by T(y,b) the quotient m(y,b)/y it follows by straightforward 

differentiation that 

(A-7)  

7 2 2 2 7  

I Y 57  

JF 
and thus it is easy to see that T(y,O) has a unique minima at y = y* = - 2 

Now for small b we have for some constant C 

-16- 
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. 

. 

d2T and it follows from the fact that the - (*f*,O) is nop.--zero that the 

minima of T(y,b) ,  which we denote  by yb satisfies 
dY2 

which was to be proved. 
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